Physics

Boost student motivation and interaction with these practical tips

Featured image for Physics

Physics


Physics is one of the oldest academic disciplines.[5] Over much of the past two millennia, physics, chemistry, biology, and certain branches of mathematics were a part of natural philosophy, but during the Scientific Revolution in the 17th century, these natural sciences branched into separate research endeavors. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms studied by other sciences[2] and suggest new avenues of research in these and other academic disciplines such as mathematics and philosophy.💥

Advances in physics often enable new technologies. For example, advances in the understanding of electromagnetism, solid-state physics, and nuclear physics led directly to the development of technologies that have transformed modern society, such as television, computers, domestic appliances, and nuclear weapons;[2] advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.

Ancient astronomy

Main article: History of astronomy

Ancient Egyptian astronomy is evident in monuments like the ceiling of Senemut's tomb from the Eighteenth Dynasty of Egypt.

Astronomy is one of the oldest natural sciences. Early civilizations dating before 3000 BCE, such as the Sumerians, ancient Egyptians, and the Indus Valley Civilization, had a predictive knowledge and a basic awareness of the motions of the Sun, Moon, and stars. The stars and planets, believed to represent gods, were often worshipped. While the explanations for the observed positions of the stars were often unscientific and lacking in evidence, these early observations laid the foundation for later astronomy, as the stars were found to traverse great circles across the sky,[5] which could not explain the positions of the planets.

According to Asger Aaboe, the origins of Western astronomy can be found in Mesopotamia, and all Western efforts in the exact sciences are descended from late Babylonian astronomy.[9] Egyptian astronomers left monuments showing knowledge of the constellations and the motions of the celestial bodies,[10] while Greek poet Homer wrote of various celestial objects in his Iliad and Odyssey; later Greek astronomers provided names, which are still used today, for most constellations visible from the Northern Hemisphere.[11]

Natural philosophy

Main article: Natural philosophy

Natural philosophy has its origins in Greece during the Archaic period (650 BCE – 480 BCE), when pre-Socratic philosophers like Thales rejected non-naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause.[12] They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment;[13] for example, atomism was found to be correct approximately 2000 years after it was proposed by Leucippus and his pupil Democritus.[14]

Aristotle and Hellenistic physics

Aristotle
(384–322 BCE)

During the classical period in Greece (6th, 5th and 4th centuries BCE) and in Hellenistic times, natural philosophy developed along many lines of inquiry. Aristotle (Greek: Ἀριστοτέλης, Aristotélēs) (384–322 BCE), a student of Plato, wrote on many subjects, including a substantial treatise on "Physics" – in the 4th century BC. Aristotelian physics was influential for about two millennia. His approach mixed some limited observation with logical deductive arguments, but did not rely on experimental verification of deduced statements. Aristotle's foundational work in Physics, though very imperfect, formed a framework against which later thinkers further developed the field. His approach is entirely superseded today.

He explained ideas such as motion (and gravity) with the theory of four elements. Aristotle believed that each of the four classical elements (air, fire, water, earth) had its own natural place.[15] Because of their differing densities, each element will revert to its own specific place in the atmosphere.[16] So, because of their weights, fire would be at the top, air underneath fire, then water, then lastly earth. He also stated that when a small amount of one element enters the natural place of another, the less abundant element will automatically go towards its own natural place. For example, if there is a fire on the ground, the flames go up into the air in an attempt to go back into its natural place where it belongs. His laws of motion included: that heavier objects will fall faster, the speed being proportional to the weight and the speed of the object that is falling depends inversely on the density object it is falling through (e.g. density of air).[17] He also stated that, when it comes to violent motion (motion of an object when a force is applied to it by a second object) that the speed that object moves, will only be as fast or strong as the measure of force applied to it.[17] The problem of motion and its causes was studied carefully, leading to the philosophical notion of a "prime mover" as the ultimate source of all motion in the world (Book 8 of his treatise Physics).

Medieval European and Islamic

Main articles: European science in the Middle Ages and Physics in the medieval Islamic world

Ibn Al-Haytham (Alhazen) drawing

Ibn al-Haytham (c. 965 – c. 1040) wrote of his camera obscura experiments in the Book of Optics.[18]

The Western Roman Empire fell to invaders and internal decay in the fifth century, resulting in a decline in intellectual pursuits in western Europe. By contrast, the Eastern Roman Empire (usually known as the Byzantine Empire) resisted the attacks from invaders and continued to advance various fields of learning, including physics.[19] In the sixth century, John Philoponus challenged the dominant Aristotelian approach to science although much of his work was focused on Christian theology.[20]

In the sixth century, Isidore of Miletus created an important compilation of Archimedes' works that are copied in the Archimedes Palimpsest. Islamic scholarship inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further, especially placing emphasis on observation and a priori reasoning, developing early forms of the scientific method.

The most notable innovations under Islamic scholarship were in the field of optics and vision,[21] which came from the works of many scientists like Ibn Sahl, Al-Kindi, Ibn al-Haytham, Al-Farisi and Avicenna. The most notable work was The Book of Optics (also known as Kitāb al-Manāẓir), written by Ibn al-Haytham, in which he presented the alternative to the ancient Greek idea about vision.[22] His discussed his experiments with camera obscura, showing that light moved in a straight line; he encouraged readers to reproduce his experiments making him one of the originators of the scientific method[23][24]

The basic way camera obscura works

Scientific Revolution

Further information: History_of_physics § Scientific_Revolution

Physics became a separate science when early modern Europeans used experimental and quantitative methods to discover what are now considered to be the laws of physics.[25][page needed]

Major developments in this period include the replacement of the geocentric model of the Solar System with the heliocentric Copernican model, the laws governing the motion of planetary bodies (determined by Johannes Kepler between 1609 and 1619), Galileo's pioneering work on telescopes and observational astronomy in the 16th and 17th centuries, and Isaac Newton's discovery and unification of the laws of motion and universal gravitation (that would come to bear his name).[26] Newton, and separately Gottfried Wilhelm Leibniz, developed calculus,[27] the mathematical study of continuous change, and Newton applied it to solve physical problems.[28]

Visit= Superhhero.com

title

title

title

1

3

5

2

4

6

The discovery of relativity and of quantum mechanics in the first decades of the 20th century transformed the conceptual basis of physics without reducing the practical value of most of the physical theories developed up to that time

Fundamental concepts in modern physics include:

  • Action

  • Casuality

  • Covariance

  • Physical Field

    1. Quantum

    2. Statistical ensemple

    3. Symmetry

    4. Wave

      • Atomic

      • Nuclear

      • Astrophysics


💡

Pro Tip:

Atomic, molecular, and optical

Ready to take action?

Education